Some Practical and Useful Antenna Innovations for Amateur Radio

Professor Jim Breakall WA3FET (K3CR, WP3R, KC3R) Penn State University

Dayton Amateur Radio Association February 5th, 2021

Big Gun Friendship Net (BGFN)

Ham Radio Contesting !!!

K3CR Contest Station at Penn State

K3CR Contest Station at Penn State

WP3R/WA3FET Contest Station

WP3R/WA3FET Contest Site Arecibo, Puerto Rico (view from access road)

WP3R/WA3FET Contest Station

WP3R/WA3FET Contest Station

View of the Arecibo Observatory from the base of the tower

> WP3R/WA3FET Contest Site Arecibo, Puerto Rico

Six Arecibo 100 kW HF Transmitters Future Contest Setup for WP3R for 160 to 10 meters??!!

Some Interesting Topics Covered Today

- How good are modeling codes really for analyzing and designing a dipole antenna?
- Does 468/frequency really work?
- How to use interpolation to get it tuned to resonance.
- A new method of designing a dipole that is independent of the diameter of the wire.
- The 43 foot vertical is that really the best height?
- My old and trustworthy 80/40 (20) inverted-V fan dipole.
- My 40m 6 element Hamstick passive receive array
- Designing the SuperDARN HF log periodic array at the South Pole with new methods.

Various Antenna Modeling Codes based on NEC and MININEC

EZNEC Antenna Software by W7EL

FREE - EZNEC Pro+ v. 7.0 is now available! - FREE

Some Modern State-of-the-Art Commercial Antenna Packages

How do all the codes do with a halfwave dipole vs number of segments?

- Half-wave dipole with radius = .001 wavelenths
- FEKO cylinder model as a reference

Real Impedance

-- NEC4 -- NEC2 -- MMANA -- MMANA Auto -- FEKO Cyl -- FEKO

Imaginary Impedance

-- NEC4 -- NEC2 -- MMANA -- MMANA Auto -- Feko Cyl -- FEKO

Real Impedance

-NEC4 - NEC2 - MMANA - MMANA Auto - FEKO Cyl - FEKO

Imaginary Impedance

-- NEC4 -- NEC2 -- MMANA -- MMANA Auto -- Feko Cyl -- FEKO

What about 468/frequency (MHz) gives dipole length in feet?

- Where does 468 come from?
- Ward Silver NOAX had an article in Eham.net in May, 2010. <u>Where Does 468 Come From? (eham.net)</u>
- *"Every ham is expected to memorize it... it's rarely correct."*
- ARRL Antenna Book (initial edition 1939): "the "end effect" due to the attachment of insulators at the ends of the antenna results in the approximately 5% reduction in length from the free-space 492/f to 468/f."
- ARRL Handbook (initial edition 1929): "natural wavelength" and "(300 x 1.56)/f = 468/f"
- Ward's conclusion No real background was ever found and trial and error and an antenna analyzer is best to adjust the dipole to resonance (imaginary part of impedance = 0 ohms.

40m dipole modeled at 7.15 MHz with various diameters in free space Formula varies from 458/f to 484/f – 93% to 98% of a halfwave (492/f)

Input Impedance vs Frequency

Imaginary Input Impedance of Dipole with formula 468/freq for 7.15 MHz – 65.454 ft in Free Space

Diameters – Gauges 40, 30, 20, 16, 14, 12, 10, and

1/8, ¼, ½, 1, 3, 6 inches

What diameter is closest to 468/f

• 468/7.15 = 65.454 ft

Input Impedance vs Frequency

Diameter that is closest to desired resonant frequency is 3 inches in <u>diameter</u>

 3 inches at 7.15 MHz is a radius of .0009 wavelengths

What about over ground at a height of 35 ft?

 Use average ground (relative dielectric constant = 13, conductivity = .005 S/m)

Imaginary Input Impedance of Dipole with formula 468/freq for 7.15 MHz – 65.454 ft over Average Ground (epsr = 13, sigma = .005 S/m) with Height = 35 ft Diameters – Gauges 40, 30, 20, 16, 14, 12, 10, and 1/8, ¼, ½, 1, 3, 6 inches

What diameter is closest to 468/f over ground?

150 100 50 Input Impedance 0 -50 -100 -150 -200 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 Frequency (MHz)

Input Impedance vs Frequency

Diameter again that is closest to desired resonant frequency is 3 inches in <u>diameter</u>

What about statements that it is the end insulators that causes a 5% decrease from a half-wavelength (492 x .95)/f = 468/f Insulator 2 inches x 6 inches

Shortening from end insulator effects No Insulator – 478/f Insulator – 476/f (Small Effect)

Real Impedance

How to use the magic of interpolation to always get the correct length for a desired frequency

- Use 468/f to get length for a starting point
- Ex. F = 7.150 MHz → 468/7.15 = L1 = 65.454 ft
- Measure frequency of lowest SWR \rightarrow F1
- F1 = 7.255 MHz (Not 7.15 MHz) for #14 wire
- Add 2 ft → L2 = 67.454 ft
- Measure new frequency for lowest SWR \rightarrow F2
- F2 = 7.035 MHz
- L = (L2-L1)/(F2-F1) x (F-F1) + L1
- L = (67.454-65.454)/(7.035-7.255) x (7.15-7.255) + 32.727 = 66.4 ft (Correct length)

L1 = 65.454 ft, F1 = 7.255 MHz Reference Impedance = 75 ohms

VSWR vs Frequency

- Source: Tag 1, Segment 16; Char. Imped: 75; File: Dipole interp 468 1.nec

L2 = 67.454 ft, F2 = 7.035 MHz

VSWR vs Frequency

- Source: Tag 1, Segment 16; Char. Imped: 75; File: Dipole interp 468 2.nec

L = 66.4 ft, F = 7.150 MHz

VSWR vs Frequency

- Source: Tag 1, Segment 16; Char. Imped: 75; File: Dipole interp 468 3.nec

A New Method that is Independent of the Diameter of the Wire

Input Impedance vs Frequency

200 100 nput Impedance -100 -200 -300 -400 -500 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 Frequency (MHz)

Imaginary Input Impedance of Dipole with formula 468/freq for 7.15 MHz – 65.454 ft in Free Space

Diameters - Gauges 40, 30, 20, 16, 14, 12, 10, and

1/8, ¼, ½, 1, 3, 6 inches

All curves go thru at 7.55 MHz with X = j50 ohms Formula for length now is \rightarrow 494/f (close to 492/f)

How to use this finding

- Suppose we want the resonance at 7.15 MHz
- X = j50 ohms. Need to cancel with X = -j50 ohms
- Need a capacitor in series with X = -j50 ohms
- $X = 1/(2\pi f C) \rightarrow C = 1/(2\pi f X)$
- $C = 1/(2\pi \times 7.15 \times 10^6 \times 50) = 445 \text{ pF}$
- L = 494/7.15 = 69.09 ft

Impedance at 7.15 MHz L = 69.09 ft

Final Design with Series Capacitor

Red - #14, Blue - #10, Violet – 1 inch diameter

The 43 foot vertical – is that really the best height? Requires tuner at feedpoint Assume many radials for these results

-30

10 MHz

0

30

60

90

43 ft vertical SWR with different UnUns

VSWR vs Frequency

Red (1:1) Blue (1:4) Violet (1:6) Black (1:9) Green (1:12)

A better choice of height is 20.5 ft

0

An even better approach is a 40 ft vertical dipole 1 ft off the ground

Ferrite Beads

Isolator

Coax

Coax[•]

Need an isolator at base to decouple the coax from the radiator

Red (1:1) Blue (1:4) Violet (1:6) Black (1:9) Green (1:12)

80/40 Inverted-V from same Feedpoint Used at WA3FET since 1990s

Top View – 40m legs tilted 15 degrees from 80m legs – Center at 40 ft Slope to ground is 30 deg from horizontal

80/40 Inverted-V Fan Dimensions

- Wire Gauge #12 bare Alumoweld
- 80m Leg 62.375 ft
- 40m Leg 34.469 ft
- Height of common feedpoint 40 ft
- 1:1 Current Balun
- Requires 4 anchors at ground
- Tune Lowest Frequency First

80/40 Inverted-V Fan SWR

VSWR vs Frequency

- Source: Tag 3, Segment 165; Char. Imped: 50; File: 80m Tune Opt.nec

VSWR vs Frequency

- Source: Tag 3, Segment 165; Char. Imped: 50; File: 40m Tune Opt.nec

80/40 Inverted-V Fan Patterns

I built a 6 element 40m Hamstick passive array back in the 1990s

What is needed – Hamstick Receive Array

Single 3 element in-line array Spacing = 17 ft for 7.2 MHz

namst 17ft 40 gs.nou - necvu3d
Edit Options View Help
Black Desert
Bileck Desert odd vive tes Scaling Lggund Scaling rankad Vre vide Asix Rode Tenslae Zorn
N Rotate Phi=-66 Theta=11 Saturday, May 13, 23 08:19 PM

Single 3 element in-line array Patterns

6 element array Two in-line columns spaced 80 ft

🎦 hamst 17ft 40) gs Array.nou - necvu3d	1					
File Edit Options	View Help						server and the
BBB8	Black	Desert 🔹					
Model Wire Tube Scaling C Linear Log Multiplier 10 Apply Background Solid Textured Wire Width: Axis Rotate Translate	Black	Desert					
Zoom	and the						
			and the second	and the second second	San States	and the	the second
Ready						Zoom Display Scale=12.084	Saturday, May 13, 23 08:29 PM
🛃 start 🔰	A Gnec	Radiation Pattern Sel	🏋 hamst 17ft 40 gs Arr			Search Desktop 🔎	🗾 🌆 🌉 🧶 🕉 🔎 8:29 PM

6 element array Patterns

SuperDARN

- Super Dual Auroral Radar Network
- 35 high-frequency (HF) Doppler radars located in the high-latitude and midlatitude regions of the northern and southern hemispheres
- Backscatter from ionospheric electron density irregularities that deduce various parameters
- Only currently available experimental technique capable of providing time series of large-scale direct observations of the high-latitude electric field
- Global structure and dynamics are fundamental to understanding largescale plasma processes in the near-Earth space environment
- Importance for determining electrodynamic energy input to the highlatitude regions of the Earth's upper atmosphere

SuperDARN Antenna Array in Holmwood SDA, Saskatoon

Frankford Radio Club Meeting April 2023

Typical SuperDARN Array Design

- Row of 16 log periodic (LP) antennas at a typical height of 50 feet with a sideto-side spacing of 50 feet covering a range of 8 to 20 MHz
- Additionally, 4 log periodic antennas behind the main array row to provide additional elevation angle determination
- Software defined radio (SDR) system for transmitting and receiving with a pulse peak power of 600 watts to each antenna
- Sabre Communications Corp. Model 608 log periodic covering 8 to 20 MHz

Frankford Radio Club Meeting April 2023

Log Periodic Antenna Design

- Handbook design where one chooses parameters from plots but has no control on what the boom length or number of elements is
- Front-to-back ratio is not a parameter that is part of the design

LOG-PERIODIC DIPOLE ANTENNAS

- Prof. Breakall and Rafael A. Rodriguez Solis Penn State
- Applied Computational Electromagnetics Society Journal July, 1996
- First pick $f_L = f_1$ = the minimum frequency of operation
- Next, pick f_H = the highest frequency of operation
- Then pick $f_N = 1.5 * f_H$ to insure a smooth transition at the upper cutoff frequency
- Pick the tau factor τ = scaling factor between lengths and spacings of adjacent elements
- The number of elements (nearest integer) N = $\left\{\frac{\left[\log\left(\frac{f1}{fN}\right)\right]}{\log(\tau)}\right\} + 1$
- Length of largest element $I_1 = \lambda_1 / 2$
- Pick the boom length, L

inotics societ

- Distance between first and the second element $d_{12} = L[(\tau 1)/(\tau^{(N-1)}-1]$
- One then calculates the next to the largest element length as $I_2 = \tau I_1$, and then $I_3 = \tau I_2$, etc
- Similarly, the distance $d_{23} = \tau d_{12}$, $d_{34} = \tau d_{23}$, etc.

Optimized Crossed Diagonal Log Periodic Antenna Design over Ice

- Number of wires N = 33, τ = .96, f_L = 8 MHz, f_H = 20 MHz, boom length L = 100 ft
- Height of the longest element tip = 70 ft, height of the shortest element tip = 25 ft, and a wire diameter of .125 inches
- Crossed transmission lines used in the design have an impedance of 400 ohms resulting in an input impedance of 200 ohms where a 4 to 1 balun is used

 $\label{eq:constraint} \ensuremath{\text{Total Gain [dBi]}} \ensuremath{\left(\ensuremath{\text{Frequency}} = 18\ensuremath{\,\text{MHz}}; \ensuremath{\,\text{Phi}} = 0\ensuremath{\,\text{deg}} \right) \ensuremath{\cdot} \ensuremath{\, \ensuremath{\cdot} \ensuremath{\cdot} \ensuremath{\, \ensuremath{\cdot} \$

Total Gain [dBi] (Frequency = 20 MHz; Phi = 0 deg) - lpda8_0.96_100_70-25p_to_p_boom_length

What the Antenna Array Might Look Like

• Some Concepts for Construction

Camp Kilowatt (Camp K) Contest Station on The Magic Mountain – KC3R (N3EB, WA3FET, KOLO, NK8Q, K3ARL, K3GEM)

- HFTA Shows Incredible Terrain Enhancement
- Rime and Ice and Wind and Lightning All Big Issues
- The 20m 6 Element OWA-ICE Design on 52 ft Boom
- 44 MPH with 1.5 inch radial ice
- SWR < 2 (13.25 14.95 MHz); SWR < 1.5 (13.75 14.9 MHz)

Frankford Radio Club Meeting September 2020 20m 6 Element OWA-ICE Design on 52 ft Boom Stack at 44 ft, 84 ft, and 124 ft All Turned by KOXG Ring Rotators

• KOXG Rings are Super Strong and Towers and Anchors at Camp K are too !!!

Camp K – More Photos

James Clerk Maxwell, 1831 – 1879

A TREATISE

...

ELECTRICITY AND MAGNETISM

81

JAMES CLERK MAXWELL, M.A.

> VOL II THIRD REITING

OXFORD AT THE CLARENDON PRESS 1994

1.1

W8JK – Antennas Book -1950

John Daniel Kraus, 1910 – 2004

Prof. Kraus Sent Me His 2nd Edition

ANTENNAS

To Dr. James Breakall with all best wishes

John Knang W8JK

Ronald Wyeth Percival King, 1905-2006

RONOLD W. P. KING RICHARD B. MACK SHELDON S. SANDLER

Arrays of Cylindrical Dipoles

Cambridge University Press

R.W.P. King speaking at his 100th birthday party, Oct. 2005.

Thank You!!!

